The Segregation of Surfactant upon Film Formation of Latex Dispersions: an Investigation by Energy Filtering Transmission Electron Microscopy

1997 ◽  
Vol 43 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Alexander Du Chesne ◽  
Bettina Gerharz ◽  
Günter Lieser
Author(s):  
L. D. Peachey ◽  
J. P. Heath ◽  
G. Lamprecht

Biological specimens of cells and tissues generally are considerably thicker than ideal for high resolution transmission electron microscopy. Actual image resolution achieved is limited by chromatic aberration in the image forming electron lenses combined with significant energy loss in the electron beam due to inelastic scattering in the specimen. Increased accelerating voltages (HVEM, IVEM) have been used to reduce the adverse effects of chromatic aberration by decreasing the electron scattering cross-section of the elements in the specimen and by increasing the incident electron energy.


2011 ◽  
Vol 17 (S2) ◽  
pp. 790-791
Author(s):  
M Watanabe ◽  
F Allen

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2021 ◽  
Vol 11 (11) ◽  
pp. 1881-1886
Author(s):  
Seong-Ho Ha ◽  
Young-Ok Yoon ◽  
Bong-Hwan Kim ◽  
Hyun-Kyu Lim ◽  
Sung-Hwan Lim ◽  
...  

In this study, using transmission electron microscopy and phase diagrams from thermodynamic calculations, we investigated the oxide film formation of Al–7.5 mass%Mg alloy containing Ca traces during short-term oxidation in terms of the thermodynamic stability and multi-element oxides by inter-diffusion based on the results of analysis for the oxide film. For the oxidation test at 515 ˚C, for 1 h, its results showed that there is no significant difference between the Ca-added and Ca-free Al–7.5 mass%Mg alloys was observed, while further exposure caused the Ca-free alloy to gain significant weight. Based on the standard Gibbs free energy for oxide production calculated in this study, CaO was the most preferential product among the single metal oxides examined. As per calculations for MgAl2O4-spinel formation reactions, the spinel formation from MgO was thermodynamically the most favorable. According to the phase diagrams calculated in this study, various multi-element oxides including Ca could possibly form in the oxide layer of Ca-added alloy. The analysis results of transmission electron microscopy confirmed that MgO is the primary oxide in the Al–Mg binary alloys. In oxidation tests conducted for less than 1 h, the spinel was rarely found. The outmost areas of oxide layers correspond to MgO and CaO in Ca-free and Ca-added alloys, respectively. However, in the Ca-added alloy, the inner layer contains certain amounts of Ca, Al, and Mg.


2012 ◽  
Vol 48 (9) ◽  
pp. 322-330 ◽  
Author(s):  
Shin HORIUTI ◽  
Takeshi HANADA ◽  
Takayuki MIYAMAE ◽  
Tadae YAMANAKA ◽  
Kogoro OOSUMI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document